
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

FROM CREATIVE IDEAS TO OPTIMIZED CONCEPTS AND BACK
A METHOD FOR COLLABORATIVE CREATION OF SOLUTION

ALTERNATIVES IN DECISION SUPPORT SYSTEMS

Kees van Overveld, Maxim Ivashkov

Abstract
We consider possibilities to automate the process of generation and evaluation of conceptual
solutions by Decision Support Systems (DSS) in the context of ill-defined design problems. In
early phases of the solution process, each conceptual solution is not fixed yet but can be
configured in multiple ways. Therefore, the application of DSS with respect to the generation
of solutions requires the presence of the following knowledge: the set of alternative solutions
and the set of design decisions, which are necessary for the solution configuration. However,
in the context of ill-defined design problems it is difficult to obtain the above sets beforehand.

With respect to the evaluation of solutions, active usage of DSS requires the presence of the
set of computational objectives, which have to rely on computational models. Such models
are supposed to relate the set of design decisions and the set of objectives, for the sake of
automated evaluation. However, it may be problematic to obtain ready to use models due to a
lack of structure in ill-defined problems [1].

We suggest a method called the CCC method (Collaborative Concept Creation method) for
systematic development and update of the sets mentioned above and gradual build up of
computational models by means of collaboration between a designer and a computer.

Keywords: Generation and evaluation of solution alternatives, decision support systems,
human-computer collaboration, attributes, user input, spreadsheet

1 Introduction

In order for a DSS to be used, we need the following sets, which we will refer to as DSS sets:

• a set S of solutions to a problem,

• a set D of parameterized design decisions,

• a set O of objectives.

Using a DSS in the context of ill-defined design problems is limited due to the difficulty to
obtain DSS sets beforehand [2]. In this paper we propose a method to obtain and update the
above sets systematically. This method aims to improve completeness of the above sets by
means of a systematic procedure. Other issues addressed in the paper are automated
evaluation of multiple computational and non-computational objectives.

In previous approaches the problem of making objectives computational has been addressed
in two major ways: either in a computer oriented way or in a human oriented way. In a
computer oriented way the objectives can be computed for some situations by using various
computational techniques such as

• Algorithmic methods resulting from physics, economy, engineering,

• Artificial intelligence techniques [3],

• Hybrid methods, that combine several techniques using fuzzy logic, neural nets etc.
[4].

In a human oriented way, the objectives are evaluated by means of analytical methods such as
the Analytical Hierarchy Process [5], Utility models, Weighted Sum Method, etc. We claim
that in the context of ill-defined design problems it would be good to make a merge between a
computer oriented way and a human oriented way.

The computer-oriented approach requires the presence of substantial explicit knowledge about
the discipline domain of a problem. As a consequence, it is problematic to apply the
mentioned computational techniques for evaluation of the conceptual solutions, which can
differ in underlying technical principles and thus belong to different disciplines. On the other
hand, a human oriented way suffers from human biases, subjectivity and the lack of
explicitation of expertise and intuition. It is characteristic in the later category that human
experts are interrogated for their opinions, possibly founded on expertise and intuition, rather
then explicit models. Due to implicit nature of experts’ knowledge, the repeatability and
reliability of the results of the evaluation can be questionable.

We suggest a generic method, which we refer to as the CCC method (Collaborative Concept
Creation method). The word “collaboration” here refers to collaboration between human
interpretation and evaluation and computer optimisation. The CCC method enables smooth
human-computer collaboration, which should lead to gradual and systematic development of
DSS sets on the one hand, and provide interaction at necessary moments between the designer
and the computer during the computer driven evaluation and optimisation on the other hand.
This should enable integration of a computer oriented way and a human oriented way of
dealing with objectives.

2 The CCC METHOD

The primary focus of this article is to introduce a method for concept creation process using
smooth collaboration. The term “method” indicates that there is a number of optimisation
steps to be taken. These steps may follow in not necessary sequential order. Each step
describes rather an update of DSS sets throughout the design process: from early conceptual
solutions to detailed, quantitative and optimised solutions.

We adopt here an analytical model for design processes introduced earlier in [6]. This model
aims to describe the knowledge build up during the design process. It uses three terms,
namely “concept”, “attribute” and “constraint”. This model is used to relate updates of DSS
sets with the design process. At each step of the design process a new concept, a new
attribute or a new constraint is added into the current state of the process.

Using this approach, DSS sets and their updates will be formally defined. Such a formal
approach has two major advantages: on the one hand it brings a discipline into designers’
work and makes it more systematic, on the other hand a formally defined method allows

computational support by means of a software tool. In the section 3 we introduce the software
tool ACCEL, which provides such support.

2.1 The set of conceptual solutions
The generation process starts with an initial set of ideas for the solution, typically obtained
from a brainstorm (or other creativity techniques such as brain-writing, lateral thinking [7],
TRIZ [8], etc.). The space S={si} is the space of all solutions to a problem, which were
produced so far. Solutions in S are samples from the larger conceptual set C, which is the set
of all concepts in the problem context. Notice that sets S and C are unstructured and that

S⊆C. If two teams would work on the same problem,
the set C is the same, but both teams would build
different subsets S1 and S2. The word ‘concept’ is
used in a generic way to refer to anything that is in C:
a solution, a solution feature, a requirement, a
stakeholder etc. A concept may refer to any issue that
has or needs a name and that has to be defined or
distinguished.

s 1

s 3

C

S

s 2

Figure 1. The set of solutions S is a subset
of the conceptual set C

Example 1: In order to develop a new transportation
method we generate the following initial set of
solutions: s1=‘freight train’, s2=‘bicycle’,
s3=‘conveyor belt’.

Each initial solution concept si appears first without any explicitly represented knowledge
about it, but it has a clear interpretation due to the fact that people can imagine what such a
concept means. In other words, there is a large amount of knowledge (world knowledge) that
is implicitly packaged in each of the suggested concepts. However, any structure that may
underlay this world knowledge has not been made explicit yet in the mere set S. In a next
step, we attempt, therefore, to make elements of this structure visible.

2.2 The set of attributes
For any concept ci, we assume that all relevant information that is contained in ci is accessible
via a set of attributes {aj} that are meaningful for ci. An attribute aj is defined as a function,
which returns a value vij in dependence of its argument, where this argument is a concept ci;
vij =ci.aj, which is equivalent to the functional notation used in math, namely aj(ci). vij is such
that it is an element of the range Rj of possible outcomes of an attribute aj. The set of values
in Rj is denoted as v*j. The set of values for a concept ci is denoted as vi* and is the tuple
(vi0,vi1,vi2,…,vij).

We distinguish between four, semantically distinct kinds of attributes: design attributes (Ad),
objective attributes (Ao), contextual attributes (Ac), and auxiliary attributes (Aa). Design
attributes and objective attributes are attributes of primary interest. They allow to formally
define what the set of design decisions and the set of objectives are, which are considered in
the sections 2.3 and 2.4 respectively. Contextual and auxiliary attributes are attributes of
secondary interest, which need to be taken into account during modelling.

Design attributes

Definition: An attribute (aj:aj∈Ad) is a design attribute if it is an independent attribute that
constitutes a decision for which the designer has full authority.

Attributes in Ad generate design alternatives. The range of a design attribute represents the set
of decision options. So, ‘ Vehicle. Fuel=ALT(Petrol;Gas)’ has the interpretation “the vehicle
shall be such that its fuel is either petrol or gas”: it allows the designer to constraint the value
of the attribute ‘Fuel()’.

Objective attributes

Definition: An attribute (aj:aj∈Ao) is an objective attribute if Rj allows optimisation (this
mean that the type of Rj shall be ordinal).

Optimisation can both mean: finding a minimum or a maximum, where attributes in Ad are to
be varied. An objective attribute is a dependent attribute that constitutes the effectiveness
(success) of the solution concept. In order to evaluate an objective attribute as a function of
attributes of kind Ad and Ac we need (quantitative or at least ordinal) model. Notice that
attributes of kind Ad, Ac and Aa may be either ordinals or other types.

Contextual attributes

Definition: An attribute (aj:aj∈Ac) is a contextual attribute if it is an independent attribute that
constitutes a fact of the world for which the designer has no freedom to decide .

Irrespective from the concept, contextual attributes will return a unique constraint, for
instance ‘petrol.specific_heat=[2] kJ/kg K’. As opposed to Ad, attributes of kind Ac represent
observations (or guesses) about existing facts in the world, which form the context for the
solutions. The values v*i, where ai∈Ac are the facts that are given to designers or are obtained
by means of educated guesses.

Auxiliary attributes

Definition: An attribute (aj:aj∈Aa) is a auxiliary attribute if aj depends on values of attributes
of kind Ad and Ac.

Usually auxiliary attributes play an intermediate role in order to evaluate attributes in Ao; in
themselves they do not express any desired feature of the solutions.

For instance, vibrations in themselves do not add to the perceived success of a solution, but
some damage can be caused by vibrations. Therefore vibration amplitude is an attribute ∈Aa,
and not ∈Ao.

The four described types of attributes are classified in the table below. So attributes Ad and Ao
are primary attributes, Ac and Aa are secondary attributes; Ad and Ao immediately relate to the
solution (the set of design decisions and the set of objectives), Ac and Aa are related to the
context and are only indirectly related to the solution.

Table 1. The four kinds of attributes

 Independent Dependent
Primary 1. Ad : designers choices 3. Ao: objectives

Secondary 2. Ac: contextual world
knowledge

4. Aa: auxiliary

 Notice that for any two concepts c1 and c2, we have that

(∀j:aj∈ Ad∪ Ac: c1.aj= c2.aj)⇒(∀j:aj∈ Ao∪ Aa: c1.aj= c2.aj).

Using our definitions of these four kinds of attributes, we can formally define the set of
design decisions and the set of objectives.

2.3 The set of design decisions
The set of design decisions D={v*j:aj∈Ad}. Each design decision (vij:vij∈D) is taken from the
set of decision options, which are contained in the range Rj of the attribute aj.

Design attributes allow to systematically generating new solutions by combining decision
options from different design attributes. Each generated solution can be considered either as a
modification of an existing solution or as a conceptually new solution. For design attributes
such as material or geometry, various combinations would lead to better-optimised solutions,
for instance variations of the length and the width of a box might lead to optimised volume
and area of the box. For other design attributes, for instance attributes that express physical
principles or technologies behind solutions, variations can lead to conceptually new solutions,
which might need further interpretation and feasibility analysis.

Example 2. For the problem ‘find a means for transportation’ we can propose the following
design attributes: a1=’Energy source’ with the range R1={Diesel, Kerosene, Human Power}
and a2=’Media’ with the range R2={air, ground, sea}. We can see that (Diesel; Ground) can
be easily interpreted as s1=’Locomotive’, (kerosene; air) as s2=’Airplane’. For (Human
Power; Air) there is no straightforward physical interpretation although it may inspire creative
imagination. Indeed, it has long been thought that it would be impossible for a human being to
develop enough power to fly, until a solution was actually built.

2.4 The set of objectives
The set of objectives O={v*j:aj∈Ao}. The set of objective attributes is used to evaluate all
solutions. For every solution si the evaluation results in a set of values vi*, such that

vi*={vij|vij=ci.aj, aj∈ Ao}.

From the definition of objective attributes it follows that
for any aj∈Ao and any solutions s1 and s2 there is a relation
‘better then’ or ‘worse then’ between v1j and v2j. A solution
s1 is better then s2 if the relation ‘better then’ holds
between v1j and v2j for all aj: aj∈ Ao.

v 1*

v 2*

v 3*

a 1 ∈ A o

a 2 ∈ A o

Figure 2. The set of objectives

The model(s) that relate values of attributes in Ad and Ac to
values of attributes in Ao need to be provided by the
designer. They constitute the interpretation, the physical
causality or the intuition of the designer.

Models can be build or found for many design objectives
but not for all. For many objectives related for instance to aesthetics, usability etc. it is
problematic to obtain quantitative, computational models. Therefore we distinguish between
computational and interpretational objective attributes.

Definition: an objective attribute (aj:aj∈Ao) is a computational objective attribute if it is
supported by a computational model.

Definition: an objective attribute (aj:aj∈Ao) is an interpretational objective attribute if it is
not supported by a computational model.

Consider a computational objective attribute ‘Power’ and an interpretational objective
attribute ‘Safety’, which we will apply to some of the alternatives generated in example 2
(Diesel; Ground), (Human Power; Ground), (Human Power; Air). We assume that there are
available models that relate ‘Power’ to the media state and energy state. However, for ‘safety’
we may not have found such computational models. Therefore, we have to rely on our own
interpretation of safety for each of the solutions in particular. For instance, experts’
interpretation may result in the following order: Safety((Human Power; ground))
>Safety((Diesel; ground)) > Safety((Human Power; air)). Notice that partial ordering, rather
than full ordering, is sufficient for an objective attribute. Although such ordering may be
subjective and not supported by a computational model, it still allows to express early
intuitions, which otherwise would stay unexpressed.

2.5 The procedure of the CCC method
We can now express the procedure of the CCC method. It consists of seven phases. Although
the phases are described in sequential order, in practice, the phases can be mixed. The phases
are described in two ways: by a table, which describes each phase, and a transitions diagram,
which explains information flows between DSS sets associated with each phase.

Table 2. The phases of the CCC method.

Phases Description Input Output Supporting
techniques

1.
Brainstorming

Generation of the initial set of
alternative solutions and structuring it
in form of a hierarchy

C {si}∈C Brainstorming,
TRIZ

2.
Observation

Constructing D by adding independent
design attributes aj. Obtaining vij. Add
at least so many attributes that all si can
be fully distinguishable on behalf of
their attribute values: no solutions s1
and s2 should exist anymore that have
v1j=v2j

C {aj}∈Ad
{vij}

TRIZ
Attribute-
seeking

technique,
creativity

techniques [12]

3. Generation New alternatives are generated by
making new combinations of the
elements of the various attribute
ranges. This requires a computer or a
lot of patience.

(Rj:aj∈ Ad) {vkj:aj∈Ad|k>i} Exhaustive or
genetic

generation

4. Eureka Interpretation of newly generated
solutions. This phase corresponds to
the word “back” in the title of this
paper.

{vkj:aj∈Ad} {sk}∈S Expertise,
imagination

5. Modelling Listing attributes {aj: aj ∈Aa∪Ao}.
Building up computational models
underlying aj

C {aj}∈Ao∪Aa Expertise,
customers
wishes and

requirements
6. Evaluation Evaluate computational attributes {aj:

aj ∈Ao∪Aa} to sk, compute {vkj}, assign
a fitness function to each vkj, apply a
procedure to remove non-optimal
solutions from S.

{vkj:aj∈Ad∪
Ac}, Ao, As

{vkj:aj∈Ao∪As}
{sp:p<k}

Genetic
algorithms

7.
Collaborative

evaluation

The same as phase 6 but both the
computational and the interpretational
attributes are evaluated. Section 3.2
explains how the evaluation of
interpretational objectives is supported.

{vkj:aj∈Ad∪
Ac}, Ao, Aa

{vkj:aj∈Ao∪Aa}
{sp:p<k}

Genetic
algorithms in
combination

with ‘askuser()’
function

 All DSS sets except the conceptual set C are assumed to be initially empty. Set C already
contains the currently available world knowledge from which solution concepts and attributes
are obtained (see phases 1,5). It is just not represented in any explicit format. The information
flows resulting from execution of the phases are shown in Figure 3.

C

S

C

S

Phase 1. Brainstorming Phase 2. Observation

D

C

Phase 4. Eureka

D

O

aj∈Ad

Phase 3. Generation

D
 { vkj}

S

O

Phase 5. Modelling

Phase 6. Evaluation

D

{ vkj} { vkj}

{ vij}

aj∈Ad

Phase 7. Collaborative Evaluation

D
Computer+Human

O

 aj∈Ao∪Aa

{ vkj}

aj∈Ad aj∈Ao∪Aa

C

 aj∈Ao∪Aa aj∈Ad

aj∈Ad

D

C

Figure 3. Information flows resulting from execution of the phases

3 Software support of the CCC method

The CCC method is supported by a software tool called ACCEL, which is abbreviated from
Attributes Concepts Constraints Evaluation Language [9]. ACCEL is based on combination of
notions widely used in modelling: a spreadsheet environment [10] and partial symbolic
evaluation. This combination allows gradual build-up of both DSS sets and computational
models.

On the basis of the spreadsheet environment, the design process as represented in ACCEL is a
sequence of updates of a table. The table contains 0 or more rows; every row represents one
concept. Every column in the table represents an attribute. A cell is characterized by a row
(concept ci) and by a column (attribute aj). This cell represents the expression vij= ci.aj, which

is functional expression. An update of the table can be one of the following: adding a concept
(=adding a row); adding an attribute (=adding a column), or modifying the contents of a cell
(See Figure 4).

If ci.aj can be evaluated; it also represents the value of this expression. It is assumed that the
modification of a cell immediately invokes updating other dependent cells. Such
dependencies are built during the modelling (see phase 5). If the expression in a cell cannot be
completely evaluated, the user at least can see reasons for that and can correct or complete the
model.

3
D
ob
m
fu
an
cm
ne
is

In
us
of
di
en
ca
th

E
fo
in
us
in
co
m
in
R
ob
Figure 4. The representation of the design process in ACCEL.

.1 Collaborative evaluation
uring phase 7 of the CCC method user input is required in order to evaluate interpretational
jectives (see 2.4). At all necessary moments the information is acquired from the user by
eans of an ‘Askuser()’ function, which is a part of the semantics built-in ACCEL. This
nction is placed in a cell ci.aj, where ci is a concept solution, which is being evaluated, aj is
 interpretational objective attribute. ‘Askuser()’ has the following syntax: ‘Askuser(cm.an;
’.an,; cm’’.an’’ ,…)’, where (cm.an) is tuple of references to cells, which contain information
cessary for the user to form an opinion about ci.aj. The information obtained from the user

 taken according to the semantics of the expression and is kept in a history.

 order to form an opinion about ci.aj not all information contained in ci is necessary for the
er. Often only few aspects of ci will be sufficient for an opinion. Therefore, even if millions
 different solutions have to be evaluated for aj, there will be much less solutions, with
fferent combinations of (cm.an). As the result, the user input is necessary only for newly
countered combinations of (cm.an). For all repeating combinations of (cm.an) the information
n be taken from the history. The history allows decreasing the amount of interactions with
e user tremendously.

xample 3. Consider previous example 2, where we evaluated aj=”safety” for various means
r transportation. Each transportation mean (tm) might contain a large amount of
formation, which we can neglect during evaluations of the safety, e.i. size, material, etc. Let
 assume that we are able to form a rough opinion about tm.safety if we are given
formation about energy source and the media of tm. In this case the cell tm.safety will
ntain an expression “Askuser(tm.energy_source;tm.media)” Even if there will be generated
illions of solutions, the evaluation of the safety for them will require only 3*3=9
teractions with the user, since there are only 9 different combination for the given ranges
energy_source and R media for which the user opinion is required. The necessary information is
tained by means of the user dialog, which is shown in Figure 5.

Notice that the mechanism of the
‘Askuser()’ function may cause a direct
inspiration for new creative ideas: the
user is asked to evaluated (and hence, to
interpret) a particular combination of
attributes values that she at first may not
have thought of. This corresponds to the
words ‘and back’ in the title. ACCEL
performs optimisation; in doing so, the
‘Askuser()’ functions are evaluated, which
in turn inspire to new creative ideas.

4 Summary and Conclusions

We have proposed the CCC method for
collaborative generation and evaluation of
solutions to ill-defined design problems.
The method allows to obtain
systematically DSS sets and to develop
incrementally a computational model for
the sake of automated evaluation and
optimisation. The modelling activities

associated with the method are simplified by combining the notions of spreadsheet
representation and partial symbolic evaluation into a software tool ACCEL, which supports
the method. ACCEL allows the user to do what-if analysis and to get optimised conceptual
solutions by means of a built-in multi-objective optimisation engine. ACCEL is now publicly
available and can be downloaded from our web site [9]

Figure 5. The Askuser Dialog contains the
combinations of values for which the user input is
required. The necessary user input is obtained either
before or during the optimisation.

We have tried ACCEL in both educational and industrial settings for several projects [11]. In
both cases we got different feedbacks, which were mostly positive. The present version Accel
3.1, is the result of incorporation of the feedbacks.

From our practice in industry we have experienced that people understand the method better if
they work on their own problems. However, the introduction into the method and the software
by means of examples easy to understand is essential.

We realise that more extended and systematic experiments have to be conducted in order to
further assess practical validity and usefulness of the method and the software tool. However
in this paper our main intention was to elaborate somewhat more theoretical aspects of the
method, which are related to the usage of DSS in the context of ill-defined design problems.

In comparison with [6] the new ingredients of this paper are:

• Kinds for attributes,

• The collaborative procedure,

• Askuser() function.

References

[1] Cross N., “Engineering Design Methods: Strategies for Product Design”, 3rd ed, 2000,
pp.14-18.

[2] Keeney R. L., Raiffa H., “Decisions with multiple objectives : preferences and value
tradeoffs”, Cambridge University Press, 1993.

[3] Radermacher F. J., “Decision Support Systems: Scope and Potential”, Decision Support
Systems, Vol. 7, 1994, pp.315-328.

[4] Li S., “The Development of a Hybride Intelligent System for Developing Marketing
Strategy”, Decision Support Systems, Vol. 27, 2000, pp.395-409.

[5] Oeltjenbruns H. et.al., “Strategic Planing in Manufacturing Systems-AHP application to
an equipment replacement decisions”, Int. J. Production Economics, Vol. 38, 1995,
pp.189-197.

[6] Ivashkov M. and van Overveld K., “An Operational Model for Design Processes”,
Proceedings of ICED ’01, Vol.2, Glasgow, pp.139-146.

[7] De Bono E., “Serious creativity: using the power of lateral thinking to create new
ideas”, HarperCollins, London, 1993.

[8] Salamatov Y., “The Right Solution at The Right Time: A Guide to Innovative Problem
Solving”, Insytec B.V., 1999

[9] http://sts.bwk.tue.nl/Ivashkov/

[10] Badiru A. et.al., “A Multiattribute Spreadsheet Model for Manufacturing Technology
Justification”, Computers ind. Engng., Vol. 21, 1991, pp.29-33.

[11] Ivashkov M., van Overveld K., “Early Validation of a Design Method Based On
Structured Reflection”, Proceedings of International Design Conference Design 2002,
Dubrovnik, May 14-17, 2002, Vol 1, pp. 343-348.

[12] Overveld K, et al. “Teaching Creativity in a Technological Design Context”, IJEE, Vol
19-2, pp. 260-271.

For more information please contact:

M.Y. Ivashkov, M.Sc.,
Technical University of Eindhoven, F. Bouwkunde, Vert 06 H. 01,
5600 MB, Eindhoven, The Netherlands,
Tel: +31 40 2474772, e-mail: m.ivashkov@tue.nl / k.van.Overveld@wxs.nl,
URL: http://sts.bwk.tue.nl/Ivashkov/

http://www.sai.tue.nl/RESEARCH
mailto:m.ivashkov@tue.nl
mailto:k.van.Overveld@wxs.nl
http://www.sai.tue.nl/research/

	Introduction
	The CCC METHOD
	The set of conceptual solutions
	The set of attributes
	Design attributes
	Objective attributes
	Contextual attributes
	Auxiliary attributes

	The set of design decisions
	The set of objectives
	The procedure of the CCC method

	Software support of the CCC method
	Collaborative evaluation

	Summary and Conclusions

