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Abstract 

This article describes a method using artificial neural networks (ANN) to predict subjective 
comfort ratings of average consumers at vehicle start-up from data measured in drive tests. 
The method is being developed in order to become an element of a product development 
process for power trains, allowing to integrate the customer’s view during an early stage. 

Similarly to the way a person makes his evaluation, an ANN is used to interconnect input data 
(sensation) with output data (comfort rating) by “learned” connections. After recording the 
transverse acceleration signal in drive tests, input data for an ANN are derived in time and 
frequency domain. The corresponding subjective ratings are determined on a scale from “bad” 
to “excellent”. In the training stage, input and output data of a series of start-up tests are ran-
domly presented to the ANN as teacher signals. This way it is trained to connect objective 
data with the corresponding subjective rating. The trained ANN is then used in the application 
stage to interpret input data, which has the same structure as the teacher signals but was not 
used for training. A comparison of the calculated comfort values and the comfort ratings actu-
ally given by a person shows that the prediction is possible and consequently that the applied 
method works. 

Keywords: User evaluation, man-machine interaction, optimisation techniques, simulation 

1 Introduction and objective 
The comfort sensation and consequently the demand for comfort of every person are individ-
ual. In general, customers demand an easily controllable starting element – or for automated 
systems excellent adjustment of the drive torque – with consideration of the particular driving 
situation (e.g. plane, hill, trailer… etc.). An additional demand is the prevention of distur-
bance in terms of noise, vibration or traction discontinuance.  

During the product development process, the dynamic features of vehicles are determined in 
drive tests. From these results, in order to adjust the characteristics of vehicles to customer 
demands and therefore to achieve good customer satisfaction, objectives are derived. How-
ever, as comfort quality produces subjective impressions, it is difficult to rate because a per-
son connects the presented sensation with his individual experiences and demands. Because 
tests with customers are expensive, a test engineer assumes the evaluation function of cus-
tomers at vehicle set-up and represents the according customer group. Usually, a rating sys-
tem similar to the 10-digit rating system shown in table 1 is used, where a rating index as 
number is assigned to the adjectives for description of noise and vibration disturbance as well 
as the degree of detection by customers [1]. 
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Table 1. Comfort rating system with a 10-digit scale following [1] 
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The range of 1 to 4 points represents the average customer; critical customers can be found on 
the scale up to 7 points. Usually, a rating index of at least 8 points is targeted because above 
this border even critical customers do not sense any negative influence. With regard to cost-
effectiveness from the point of view of vehicle designers, an optimal vehicle has to be de-
signed to just overcome the comfort threshold of a driver and consequently not influence his 
comfort sensation negatively. For certain, an expert can only partially manage this because it 
is difficult to adjust his individual rating pattern to the comfort threshold of a customer. Thus, 
sometimes an optimisation is carried out in areas and on levels, which are only sensed by few 
customers so that the emerging costs and the additionally required development time are pos-
sibly not justifiable.  
Because of the situation described above, an important objective in vehicle development is to 
find correlations of customer rating and data measured in drive tests or calculated by means of 
simulation models. However, for the attempt of objective consideration of comfort, i.e. the 
examination of the connection of subjective comfort ratings with objectively measurable data, 
this expert is usually also modelled. Experiments with groups of laymen as evaluators have 
until now very often not led to the demanded results. One reason for this is that the individual-
ity of the comfort expectation is not taken into account and the influence of person and vehi-
cle is mixed [2]. A possibility to avoid this is to model every person individually and deter-
mine his individual comfort rating. Although “if the ultimate objective is to predict accurately 
the range of human responses by algorithmic analysis, we should recognise that this is 
unlikely in the short term” [3], the results presented in this article demonstrate that ANNs are 
tools that allow to generate individual comfort ratings from data measured in drive tests with-
out too high an effort.  

2 Method of comfort evaluation by means of an ANN 
2.1 Data acquisition by drive tests 

The described method in the current stage is restricted by the assumption that the person con-
cerned makes his rating only based on the sensed transverse acceleration. To make sure that 
the data, which was processed in the ANN, contained the same information as the impression 
rated, it was necessary to avoid impressions on the rating person that were not captured objec-
tively. Therefore, the rating person did not drive the vehicle himself but was on the front pas-
senger seat, i.e. the start-up process and not the vehicle is examined. Additionally, the ability 
of hearing was limited by using hearing protection to minimise acoustic influence. The test 
person was also asked to close his eyes to avoid any influence by the environment.  

The tests were accomplished by 21 persons with the same vehicle – a premium class limou-
sine with manual transmission. Each person rated a series of 50 consecutive tests. To achieve 
a difference in start-up quality, diverse drivers were used and the characteristics of the start-up 
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process were varied by variations in clutch and gas pedal operation. The test persons were 
average consumers without special training concerning comfort rating. 

The subject of the study is the start-up process, i.e. the process of starting to drive from stand-
still and the following acceleration process until a constant driving speed is reached. Figure 1 
shows an exemplary chart of engine speed, gear input speed and wheel speed. 
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Figure 1. Speeds of engine, input gear-shaft and wheel during star-up process 

2.2 Derivation of input data and output data  
Of each test, the subjective comfort rating of the respective test person was noted. The com-
fort rating in the training stage (see 2.4) are supplied to the ANN as output.  

The test person stated his comfort impression by a mark on a continuous scale with the sub-
jective end points „bad“ and „excellent“. There are intentionally no absolute formulations 
used for the extrema to enable every person to cover his individual comfort range. The rela-
tive position of the mark between 0 („bad“) and 1 („excellent“) is then interpreted as a value 
for the comfort rating as exemplarily shown in figure 2.  

„excellent“„bad“

0 10.5

X

0.72

„excellent“„bad“

0 10.5

X

0.72  
Figure 2. Subjective rating scale 

During the test, the transverse acceleration in driving direction was captured at the seat rail. 
From this acceleration signal input values for the ANN are derived in time and frequency do-
main.  

From the acceleration signal in time domain three values are derived as input data for the 
ANN. As indicated in figure 2 these values are the maximum amax of the achieved accelera-
tion, the relative time ta,max when maximal acceleration occurs and the duration T of the start-
up process until a constant driving speed is reached. 
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Figure 3. Input data derived from acceleration signal in time domain 

The acceleration signal is transferred into frequency domain using a procedure similar to the 
calculation of the power spectral density (PSD) [4].  

The basis of the PSD is the root-mean-square (rms) value of the vibration. Theoretically, the 
PSD of a function a(t) with the real amplitude â(ω) is determined according to: 
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Instead of transforming the signal into frequency domain by using the Fourier transformation 
algorithm and determining the PSD according to the formula above, it can also be calculated 
by decomposing the time signal by band-pass filter with a filter range ∆ω into harmonic oscil-
lations and afterwards calculating the single rms values according to: 
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Furthermore, for a sufficiently small filter range ∆ω the spectral density is approximately the 
square of the rms value divided by the filter frequency range. 
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For a constant filer frequency range, the square of the rms value is approximately equal to the 
discrete spectral density with the chosen filer frequency range. Because of this proportionality 
squaring is not necessary and the formula for a modified PSD can be given as: 
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Here with a filter frequency range of 0,25Hz, the calculation of the modified PSD delivers 
400 values. A data reduction by determining average values in intervals following the percep-
tive faculty of humans as it is described in [4] results in 17 values. The size of the interval is 
therefore set to be small in areas of low frequency values and larger in areas of higher fre-
quency. To be precise, there is a value each for the intervals 0-3Hz, 3-4Hz, 4-5Hz etc., and a 
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value each for 10-19Hz, 20-29Hz, etc. up to 100Hz. Figure 4 exemplarily for the section from 
3 to 30Hz shows how this procedure leads to 9 representative values. 
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Figure 4. Input data derived from acceleration signal in frequency domain 

As a result of the drive tests there are 50 sets of data available for each test person. The data 
sets are combined to a pattern file for processing in an ANN. Every set consist of three values 
derived from the acceleration signal in time domain, seventeen values derived in frequency 
domain representing the input signals and one value for the comfort rating representing the 
output value of the ANN.  

2.3 The Artificial Neural Network 
Artificial neural networks originally were developed as highly simplified copy of the human 
brain. However, the objective was not to exactly copy the biological example but to generate 
a model which accomplishes its main functional characteristics by a computer. Accordingly, 
neural networks are “information processing systems consisting of a large number of simple 
units (neurons) which dispatch information in form of activation of these units via directed 
connections. A fundamental feature of neural networks is their learning aptitude, the ability to 
independently learn a task, e.g. a classification problem, from training examples without the 
neural network being explicitly programmed” [5]. 
The artificial neuron, just as the biological neuron, consists of inputs (dendrites), connections 
(synapses), activations (cell body) and an output (axon). Figure 5 shows the components of a 
biological and an artificial neuron. 
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Figure 5. Components of a biological neuron (left) and artificial neuron (right) following [5] 
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The input signals ii may originate from the environment or from the output of another neuron. 
Different network models allow different ranges of values with the real numbers of the inter-
val [0,1] as the typical range. 

A real number is assigned to every connection in an ANN as weight wi to describe the 
strength of the connection. 

The netto-input net corresponds to the weighted input signals: 

∑ ⋅=
i

ii iwnet  (5)

The activation function f(net) determines the output o according to the netto-input. This out-
put, on the other hand, can be an input signal for another neuron or the output of the ANN. 

The sigmoid function as described in figure 6 is used as activation function of the ANN used. 
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Figure 6. Function and plot of the sigmoid function 

The operating principle of an artificial neuron can be described as follows: “The connections 
of a neuron accept activations ii with definite boosts wi, summarize them, and cause an activity 
at the output if a threshold is exceeded“ [6]. 
An ANN consists of several layers of neurons. The number of neurons in the input layer 
equals the number of input data. Similarly, each neuron in the output layer generates a value 
so that the number of neurons in this layer equals the number of output values. The number of 
hidden layers and the number of neurons in them depends on the problem to be solved by the 
ANN and affects the performance of the ANN. All neurons inside the hidden layer are con-
nected. The topology of the ANN used is:  

• Input layer:          20 neurons (20 input values describing the acceleration signal) 

• Hidden layer:    100 neurons as a matrix of 10 x 10 neurons 

• Output layer:        1 neuron (output value describing the comfort rating) 

2.4 Training (learning) and application 
The training method is characterised by the algorithm used to train the ANN for solving a 
special problem. The algorithm applied is the back-propagation algorithm. It works in two 
steps. In the feed forward step at the input, a pattern of teacher signals is presented and the 
output calculated with randomly chosen weights is determined. From the calculated output 
and the desired output teacher signals the error is calculated according to the error function. 
The error function used the square error E: 

∑ −=
k

2
kk )od(E  (7)

During the back-propagation step, this error is then distributed to the weights in the layers 
starting from the output layer. This way, the weights wi are modified to reduce the error. The 
back-propagation algorithm iteratively determines the minimum of the error function accord-
ing to the gradient decent algorithm. By using the sigmoid function as activation function, the 
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error function of the ANN becomes continuous and universally differentiable, which is re-
quired for minimum search. The sigmoid function (6) is very suitable to be used as activation 
function for processing by computer because its differentiation can be easily calculated as 
follows: 
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The combination of weights which minimize the calculated error represents the solution to the 
given problem. The „knowledge“ of the ANN is then saved in the weights. After the training, 
the ANN has a definite structure and is ready for independent evaluation. Although training 
takes some time, the application works very fast. 
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Figure 7. Training (left) and application (right) of an ANN 

During training stage, the corresponding input and output teacher signals of 30 of the 50 start-
up processes determined for every person are randomly presented to the ANN. To avoid 
“memorising” the input-output pairs instead of discovering the rule of connection, the training 
is stopped as soon as the net converges, which usually happens after 30.000 cycles.  

During application stage, the remaining 20 input signals are presented to the trained ANN and 
the output signals are calculated. 

3 Results 
The evaluation of the results is carried out by comparing the predicted output value for the 
comfort rating of the ANN and the subjective rating actually given by the person in the corre-
sponding drive test. Figure 8 shows the results of 80 drive tests by four persons – 20 tests per 
person – with the subjective comfort ratings on the ordinate and the calculated ANN output 
values on the abscissa. For each ANN, 30 sets of teacher data were used for training. There 
was no selection of data, i.e. the first 30 sets were used for training and the last 20 sets for 
verification.  

If exact approximation was possible, all points would lie on the first bisecting line. In the dia-
grams, the area marked light grey represents a deviation from the exact value of +/-0.1, the 
area marked dark grey a deviation of +/-0.2. In comparison with table 1, the light grey area 
corresponds to a deviation from the exact value of +/-1 point for an average consumer who is 
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able to differentiate a maximum of 5 points. For a critical customer with the ability to differ-
entiate a maximum of 8 points it corresponds to a deviation of +/-1.6 points. 
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Figure 8: Comparison of subjective rating and ANN output 

The deviation of the calculated ratings from the values actually determined in the tests is a 
criterion for the quality of the ANN. In statistics, the standard error Sy,x is used to indicate the 
size of the error at the prediction of a y-value belonging to a certain x-value. It is calculated 
according to: 
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The standard error of the ANN’s output relating to the subjective rating is Syx = 15.7 %. 
Compared to the rating precision of average consumers, this value is within a range of varia-
tion of subjective driver ratings by high experienced drivers [7]. 
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4 Conclusions and Prospects 
As demonstrated in the previous paragraph and in [8], the approximation of comfort ratings of 
average customers by means of ANNs is possible and consequently the practicality of the 
described method is proven. However, it turned out that the calculation did not show satisfac-
tory results in all cases. Possible reasons for this are stated below. They are focus of further 
research at the Institute of Machine Design and Automotive Engineering. 

Due to the fact that the participants of the drive tests were untrained laymen – which was an 
important factor of the investigation – it is likely to be assumed that not all of them were 
really capable of delivering reproducible testing results. From this point of view, it can be 
assumed that the respective ANN nevertheless modelled the evaluation pattern of the person 
according to the teacher signals. However, the comparison of calculated and actually deter-
mined ratings then had different results because the person rated randomly and the comfort 
ratings used for verification do not match to the learned pattern.  

Furthermore, the investigation so far showed that it was hardly possible to use an ANN 
trained with teacher signals of a person “A” to calculate the ratings of a person “B”. The at-
tempt to train an ANN with teacher signals of all tests and then use this ANN to calculate rat-
ings of single persons was not successful either. It is assumed that the reason for this is the 
subjective perception of comfort of individual persons. 

One reason for unsatisfactory modelling may be that at least some of the test persons not only 
rated impressions which are to be put down to the transverse acceleration signal. For instance, 
in spite of the hearing protection, it is still possible to detect a certain amount of noise. In this 
case, the input data for the ANN does not contain all the information necessary for modelling. 

In a next step, the test persons will be drivers instead of passengers. Then not only the trans-
verse acceleration but also noise, accelerator pedal position, etc. are considered as input sig-
nals. Of course, the presented man-machine model, which is based on a test person at the 
front passenger seat and only considers data derived from the acceleration signal, can there-
fore not be applied to a driver as important input data like the accelerator pedal position are 
not taken into consideration. The driver expects the vehicle to react to his action and perceives 
a disturbance in terms of comfort, if this reaction is unexpected. On the other hand, he toler-
ates negative reactions, e.g. traction discontinuance, if they occur due to his operation. 

In addition to the research topics mentioned above, the prediction of comfort ratings from 
test-bench data and numerical simulation data is a further challenge. ANNs are expected to be 
promising research tools for this [7]. Especially for optimisation and individualisation of auto-
mated systems like intelligent clutch systems [9] the method may serve a powerful tool. A 
further idea of application is to use the tool in research for the evaluation of test-bench or 
simulation quality. Which values does a test-bench have to deliver to allow the prediction of 
human sensation?  

Generally, an increased number of tests used as teacher signals for every person will improve 
the modelling. The more independently input-output sets are presented to the ANN in the 
training stage, the better will be the approximation in the application stage, because the lower 
will be the effect of outliers. 

The man-machine model, which is very simple in the current stage, will be improved step by 
step to become a further development tool that will help to improve the hardware-in-the-loop 
method in virtual product development and will complete the integrated product development 
environment of the Institute of Machine Design and Automotive Engineering at the Univer-
sity of Karlsruhe, Germany [10]. 
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Nomenclature 
a(ω) Acceleration function o Output signal 
â(ω) Real amplitude of a(ω) ok Calculated output of neuron of k-th layer
arms(ω,∆ω) Root-mean-square value Sy,x Standard error 
amax Maximum of the acceleration T Duration 
∆ω Filter frequency range ta,max Relative time till amax is reached 
E Square Error tk Desired output of neuron of k-th layer 
Φa(ω) Power spectral density n Number of values 
Φa,mod(ω) Modified spectral density wi Weight of the i-th input 
ii Input signal at the i-th input ω Angular frequency 
net Netto-input   
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