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Abstract: A Manufacturing Execution System (MES), an Enterprise Resource Planning (ERP) 
system and a Supervisory Control and Data Acquisition (SCADA) system make up the information 
and decision-making infrastructure of a modern company. 

Collaboration between SCADA and ERP system historically depended on the individuals who 
served as a link between production and management. MES enhances the collaboration between 
managing and manufacturing functions. MES adds new functionality to production management, 
and adds refinement to ERP and SCADA interfaces. 

MESs are traditionally built in client-server configurations. This paper presents a new concept in 
a  MES design and presents an extension of MES functionality. The proposed concept addresses, 
first, the distributed nature of modern manufacturing and second, the need for mutations in 
manufacturing. The extension in functionality is the inclusion of micro-planning, supported by 
statistical simulation, into the MES framework.  

 

1. INTRODUCTION 
The concept of using computer systems to assist in 
the production operation has been around since the 
early 1980’s. Initially it was named Computer-
Integrated Manufacturing (CIM), but as the scope of 
these systems increased and some standard products 
become available, the Manufacturing Execution 
System (MES) definition evolved. It is about a 
system that helps everyone in production to execute 
the plan. MESs range in scope but at minimum they 
all make production information available in real-
time to all those who need it. 

A modern MES implementation is technically a link 
between the real time, event driven shop floor 
control systems and the transaction order driven 
higher level system, i.e., the ERP system, Figure 1. 
MES guides, initiates, responds to, and reports on 
production floor activities as they occur. The 
resulting rapid response to changing conditions, 
coupled with a focus on production efficiency and 

quality, drives value-added production floor 
operations and processes. MES provides a level of 
detail and real-time control that is impossible to 
achieve with an ERP system only. Built-in real-time 
micro-scheduling minimizes non value-added 
activities. It is geared to keeping optimal work-loads 
on machines at all times and thus helps to achieve 
high production throughputs. 

An instantaneous implementation of a purchased 
MES is not possible. A plant-wide MES can not be 
purchased as a finished product. It must be built to 
the requirements of each facility. Such a system is 
traditionally expanding its functionality over a 
period of years, incorporating existing equipment, 
and being modified to integrate new equipment as 
and when the equipment becomes installed. 

Properly designed and maintained, MES provides a 
distributed database, sensors for tracking production 
processes, structures for decision-support and 
communication, that all collaborate in providing data 
in a secure and timely fashion to all major functional 
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Figure 1 MES is a link between the ERP and shop floor control systems 

areas, i.e., to process control, production 
management, commercial and technical applications. 

There are several MESs available on the market, 
especially for the high volume production where 
only a state-of-the art organization of production 
gives a competitive edge. 

MES solutions for a geographically distributed 
production environment are at a less mature stage. 
Relevance of standardized interfaces and protocols 
for building a distributed MES is recognized as 
important. Beyond that it is up to the designers of a 
particular system to build working solutions. This 
paper presents an ICT framework, that, when 
adhered to, yields an evolutive distributed MES. The 
proposed framework for a MES design is an answer 
to challenges of modern adaptive distributed 
manufacturing, which is, by nature, loosely coupled 
and flexible. Each player in the adaptive 
manufacturing value chains needs to be prepared to 
deal with a changing mix of trading partners, 
depending on which virtual product coalition they 
are participating in. Proposed MES framework 
addresses the issue of change management in a MES 
for a distributed manufacturing via sets of functional 
components that are stored in a components 
repository and autonomously distributed to different 
geographic places as needed. 

Production planning is usually understood as a work 
of a deterministic nature. This work is traditionally 
performed by tools, built into ERP systems, that use 
data from a database to sum-up various production, 
storage, transport times and costs. These are than 
displayed in Gantt charts for different sequences of 
manufacturing activities. Experts are needed to 
schedule activities of different production orders that 
are executed simultaneously on shared 
manufacturing resources. The proposed framework 
first, introduces micro-planning on a production 
floor and second, addresses the non-deterministic 
nature of production processes with help of 
statistical simulations of production activities. 

2. BACKGROUND 

2.1. Modern distributed manufacturing 
systems 

Several paradigms for the analysis and synthesis of 
modern manufacturing, i.e., of modern means of 
production, relocations, and storage have emerged in 
the last decades. The best known are holonic [1], 
fractal factory [2], bionic [3], and Complex Adaptive 
Manufacturing Systems (CAMS) [4]. All of these 
paradigms achieve their objectives by the adaptation 
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of the manufacturing systems to ever-changing 
requirements. It is in the parting scheme and in the 
decision-making processes that they differ mostly 
from each other. Progress in refining decision-
making processes is being reported steadily. 

2.2. Distributed Monitoring and 
Control Systems 

The art of distributed software design is in the 
structuring of the application into self-sufficient 
entities with well-defined interfaces. Each entity 
itself is a small application. A good partitioning 
strategy enables writing software of great 
complexity. Actually, C++, which is the mother of 
all object-oriented languages, was introduced for 
solving one of the most difficult distributed 
problems in the fifties -- the optimization of a 
telephone switching network. AT&T founded this 
work, which produced the C++ compiler as a by-
product [5]. Such a network has a close resemblance 
to a distributed manufacturing environment. Both 
systems consist of self-sufficient entities (switches 
in networks and different processes in 
manufacturing). 

Efforts founded by the Advanced Research Project 
Association (ARPA) resulted in the creation of the  
Internet. This opened the potential for, first, 
effective information dissemination, and, second, for 
a huge upgrade from object-built applications to 
distributed object-built applications. New distributed 
programming technologies emerged in the last 
decade. The relevant ones for application 
programming are: Component Object Request 
Broker Architecture (CORBA) [6, 7, 8, 9, 10]; 
Distributed Component Object Model (DCOM) with 
its derivative COM+, and .NET. Distributed 
programming technologies use communication 
technologies, built into Operating Systems (OS), and 
internet infrastructure (routers, firewalls, 
interconnecting hardware). 

2.3. Statistical simulations in 
manufacturing 

Statistical, as opposed to deterministic simulation, 
takes into account scheduled activities and random 
events, calling for statistical modeling, such as late 
deliveries of material, customers' modifications of 
orders, machine breakdowns, sickness, etc. Can such 
modeling significantly help to improve 
manufacturing practices? 

Let us put manufacturing activities into a perspective 
on a large scale of Newtonian mechanics. Biology or 
sociology might also be instructive, but are not 
within the author's competence. 

At one end of the scale is the fundamental level of 
the theory. Here, one studies, for example, the 
motions of a few mass points interacting with each 

other within well defined initial and boundary 
conditions. The problems may be technically 
difficult, but they are well defined and solvable, at 
least numerically. 

At the other extreme is the statistical level. Here, the 
number of particles is so large (approaching 
Avogadro's number) that the motions of individual 
particles can no longer be followed - nor would there 
be a justification or possibility to do it. Only some 
statistical concepts adjusted to respect conservation 
of energy remain. These concepts are temperature, 
entropy, pressure, etc.. The net effect is that classical 
mechanics, by forgetting individual components and 
concentration on their statistical behavior, gives rise 
to thermodynamics - a totally new paradigm. 

The first, fundamental level is concerned with 
individual elementary systems free of random 
behavior; and the second, statistical level ignores 
completely the individuality of the parts to 
concentrate on their collective effects. 
Manufacturing belongs to an intermediate level, 
where both individuality and statistics are important. 
At this level, the number of items in production and 
machines is large enough to justify statistics, but not 
large enough to render the individual pieces 
irrelevant. Hence, their individual properties as well 
as their interactions modified by random events must 
be considered simultaneously. Just about the only 
practical approach available for the analysis of such 
complexity is computer simulation.  

A structure of simulator’s internal design matches a 
structure of a manufacturing process. Discrete event 
type simulation technique and dynamic build-up of 
objects, which correspond to machines and items in 
production, are the software design approaches that 
result in mapping of manufacturing activities into 
simulation. Statistical behavior is introduced on a 
level of an object, i.e., for machines, operators and 
items in production. All these are described by 
parameters with different statistical distributions [11]. 

Some commercial tools exist for simulation of 
manufacturing activities. Arena is the most popular 
one. However, it is aimed at simulation at large scale 
such as supply chains, logistics applications and 
improvement of business processes. 

2.4. Reusable Software Components 
Object oriented compilers are a result of tedious work. 
These compilers give means to materialize the 
encapsulation concept that is fundamental in the 
design of a reusable component software. Object 
Management Architecture (OMA) [12], and open 
system architecture for CIM (CIMOSA) have been 
suggested in the last decade to facilitate the static 
integration of reusable components. Reuse-centered 
developments have been performed in the design of 
production control systems [13, 14, 15, 16, 17] and in 
business systems [18]. Research in ontology for 
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designing embedded system applications from 
reusable components are reported by Jenko et al. [19]. 

Reusable software components are used in a form of 
source code components and in a form of compiled 
components. Source code components give the 
freedom to trim functionality easily and to switch  
easily among target platforms. Compiled 
components are used in a process of software 
linking. Both source code components and compiled 
components are supposed to be built into an 
application before its first usage. 

Components prepared for dynamic linking (inclusion 
on demand when the application is running) are not 
yet very common. Operating systems take advantage 
of such locally available components to use fewer 
hardware resources at a time. Programming 
specialists, with such components, can maintain and 
upgrade real-time systems that need to operate in a 
non-disruptive manner. 

A dynamic inclusion of remote (as opposed to local) 
software components is presented in this paper as 
means to build a practical MES that supports 
distributed manufacturing in the open environment. 
In our particular case, it is distributed manufacturing 
of different electronics modules that is monitored 
and controlled with help of the intranet and internet 
environment. 

3. EVOLUTIVE COMPONENT-
BUILT MES DESIGN 

The presented MES monitors and controls entities of 
a distributed manufacturing process. 

Object oriented compilers, internet infrastructure 
and software technologies for collaboration of 
remote objects gave us the infrastructure to build 
such a MES. 

Statistical simulation on a level of micro-planning 
on a production floor is built-in into the presented 
MES to improve understanding of different 
production scenarios, bottlenecks and to result in 
simulation-supported decisions. 

Proposed formalization of a MES design in a form 
of reusable software components gives us means to 
built a MES that reacts to changes in a production 
environment, i.e., it has evolutive properties. This 
design is also scalable, since increased system 
complexity results only in bigger system and in 
increased information traffic, and not in increased 
complexity, i.e., in increased functionality of an 
elementary building block, which is a software 
component. 

Complex Adaptive Manufacturing System (CAMS) 
paradigm [4, 20] gave us a concept for structuring a 
manufacturing process into self-sufficient entities. 
The CAMS paradigm divides a manufacturing 

 

Figure 2 Elementary work system in CAMS paradigm coupled to a component-built virtual work system 
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process into elementary processes that can be 
analytically described. To implement an elementary 
process, CAMS paradigm introduces an Elementary 
Work System (EWS). EWS consists of a work 
process, of hardware elements that are sufficient to 
implement a work process, of a work process 
identification that enables process control and its 
optimization, and of a human operator, Figure 2 [4]. 
EWSs do have the capabilities and the competence 
to perform particular manufacturing operations. 
They are conceptualized as autonomous units and 
the indivisible building blocks of a manufacturing 
system. EWSs' representatives in the information 
world are Virtual Work Systems (VWSs). These 
were introduced as the progress in ICT was 
beginning to promise the possibility of effectively 
building such structures and inter-VWS information 

exchanges. 

 

VWSs, EWSs representatives in the information 
world, are operating in computers that are wirelessly 
connected to the intra-net (embedded Linux and 
WindowsCE3.0 on rugged Tablet PCs and on 
embedded PCs). 

3.1. MES evolution via emergent 
response of a VWS 

VWSs are built from functionality components. The 
novelties in the proposed component-built 
distributed system for production monitoring and 
control are: 

- a reference node, i.e., functionality components 
repository is introduced, Figure 3. Here, reference 
components are stored and maintained. The 
reference node is on a component-dedicated 
platform.. 

Figure 3 Information exchange for monitoring, 
control and delivery of software 
components on demand 

- functionality components are automatically 
downloaded from a reference node, installed into the 
VWS, and immediately used to boost or modify 
VWS functionality when needed. 

Inter- VWS information exchange, and intra- VWS 
functionality, enables a distributed monitoring and 
control. And exchange of component requests for 
component assemblies enables VWS emergent 
response. Whenever an component-built VWS 
receives data that it is not equipped to process, it 
searches for a required functionality in the reference 
node, Figure 3. The component assembly, that 
encapsulates required functionality, is downloaded 
and installed into the VWS in the most unobtrusive 
manner. The VWS immediately uses the new 
functionality to produce a response to the request 
that triggered the whole activity. On a system level, 
such a component assembly exchange gives means 
for system evolution and mutations. 

 

Figure 4 Building-up a functional component assembly 
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Figure 4 presents a flowchart of activities that are 
involved in the creation of a component assembly in 
a reference node. First, a VWS sends a request for a 
new functionality to the reference node. It is a 
responsibility of software developers to 
simultaneously release component assemblies that 
send requests, and those that send replies to new 
requests. Therefore, the condition that a requested 
component would not be available should not be 
allowed to occur. 

In the reference node, first a component assembly 
list is generated from information on components 

and on intra-component dependency. This 
information is stored in a database on components. 
Then, components from the assembly list are 
sequentially extracted from a database. They are 
packed together with the assembly list into an XML 
document. The data is sent to the VWS that 
requested new functionality, Figure 5. In this case, it 
is a Functionality Component Assembly J, that is 
needed in a VWS I to process the incoming 
message. The VWS unpacks the document from the 
reference node. Then, the VWS uses information 
from a dependency list to autonomously install inter-
dependent components in a proper sequence. New 

Figure 5 Activities involved in an VWS emergent response 

 

Figure 6 Activities involved in the  communication after the particular component assembly download 
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functionality is installed and immediately available 
to process the message that triggered the whole 
activity of component assembly build-up, 
downloading and installation. Figure 6 shows 
subsequent information exchange with the 
involvement of Functionality Component Assembly 
J in the VWS I. 

4. EVOLUTIVE COMPONENT-
BUILT DISCRETE EVENT TYPE 
SIMULATOR FOR MICRO-
PLANNING 

In Taylor's paradigm, the “project” remains the same 
over a long period of time. For example, a fixed 
project might be “populate and solder a set of 
printed circuit boards (PCBs) and finally assemble 
the boards into an electronics module of a product 
A”. The components are then continually being 
replenished from the outside, component placing and 
soldering stations continually produce populated 
PCBs, the kitting station continually replenishes the 
queue of PCBs, and the assembly EWS continually 
processes the PCBs into an electronic module 
according to the same processing instructions, or 
programs. 

 

In adaptive manufacturing, however, the job orders 
and Work Flow Specifications (WFSs) change over 
short periods of time. For example, the projects 
might be “produce electronics module for 10000 
units of a product A”, followed by “produce 
electronics module for 2000 units of a product B”, 
etc., with likely return later to the production of a 
module for a product A. Clearly, the input queues, 

kitting procedures and queues of PCBs are project-
specific. Not only because the components and EWS 
programs are different, but the customers might be 
different too.  

Figure 7 Subsystem for the assembly of electronics 
modules 

In such scenarios of adaptive manufacturing a 
statistical discrete event type simulation supports 

 

Figure 8 Two WFS sharing the same resources 
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Figure 9 Times and costs for an EWS N 

decisions in micro-planning. Let us define a 
production floor as a set of EWSs and links among 
them. EWSs correspond to different production 
phases, and links correspond to transport paths that 
material pieces need to cross between production 
phases. For example, the subsystem for the assembly 
of electronics modules is in Figure 7. The model for 
the production floor, consisting of EWSs and links 
where different job orders and WFSs take place 
simultaneously on a large scale is in Figure 8. Here, 
the material flow defined by the application A is 
represented by solid lines, the material flow defined 
by the application B by dashed lines. In this 
example, EWS 3 is not used by either application - 
but might be by other applications at other times. 
EWSs 1, 2, 3, 4, and 5 perform placing of 
electronics components onto a PCB and soldering 
them, EWS. 5 is a kitting station and EWS 6 
performs the assembly of electronic modules from 
different PCBs. 

Job orders are the actual inputs to the manufacturing 
system and WFSs define the production process. 

The essential simulation outputs are distributions of 
production times and of production costs, such as in 
Figure 9. Statistical data, concerning the utilization 
of EWSs, help to discover production bottlenecks 
and resource underutilization. 

5. IMPLEMENTATION 
It took one engineer-year (EY) of research to 
evaluate combinations of available technologies. It 
took another two EYs of effort to develop and code 
a real world design for a distributed MES consisting 
of an component-built ERP interface and VWSs, and 
of a component-built built-in statistical simulator for 
a micro-planning support. 

Such a scalable project for the implementation of a 
distributed application needs to effectively address 
security, ease of maintenance, system extensibility, 
system mutations, and net bandwidth preservation. 
These issues become most critical to the success of a 
project when a distributed application spans the 
intra- and internet which is the case with distributed 
manufacturing. 

Regarding security, existing security policies must 
remain intact, i.e., firewall and router settings must 
not be changed in order to make a new distributed 
application work. No additional ports are to be 
opened. A combination of a SOAP service, XML 
language, and HTTPS gives means to preserve 
security, since this combination allows passing 
information through firewalls and routers that are set 
to allow only web browsing, that is, are set for 
common internet usage. HTTPS itself has built in 
mechanisms for authorization, authentication, and 
data encoding. 

Component-built VWSs, structuring functionality 
components into sub-components, managing 
component inter-dependency with the help of 
dependency lists, usage of .NET technology for 
intra-agent components activation, and focusing 
system maintenance and system development on a 
reference node only, makes the implementation of 
the presented MES feasible. Particularly, since: 

- VWSs maintain and evolve by themselves. Only 
the reference node needs human maintenance. 

- VWS implementation complexity is reduced. 
Structuring VWSs into sets of logically simple inter-
dependent components makes coding a profession, 
not an art. 
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Figure 10 Coupling of modern RAD tools, libraries, compilers, and platforms 

- New EWS inclusion is solved on a system level. 
An EWS, added to the production floor, is 
immediately equipped with a VWS, that is created 
from a template. The VWS then develops 
functionality through its life time. 

- Net bandwidth is not wasted. New (or different) 
functionality is transported by internet only when 
needed, and only to the destination where it is 
needed. 

- User’s perception of MES responsiveness is 
practically the same in the case of VWS-emergent 
response, Figure 5, and in the case of normal  
communication to/from the VWS, Figure 6. The 
whole chorus of downloading a functionality 
component assembly, its registration, and activation 
takes less than a second on a distant Pocket PC 
connected to a reference node via a combination of 
intra-, and internet infrastructure. The limiting factor 

to response time is actual internet bandwidth. The 
bandwidth is sufficient when intra- nets are 
connected to a public infrastructure via cost-
effective ADSLs. 

- Intra- net security is not compromised. All 
information flow is performed via HTTPS protocol 
which includes its own security mechanisms. 
Firewall settings remain intact. 

Figure 10 shows coupling of modern RAD tools, 
libraries, compilers and platforms that all can be 
used to build distributed evolutive component-built 
MESs. 

6. CONCLUSION 
Structuring monitoring and control processes for 
manufacturing into EWS-local entities, i.e., VWSs 
that communicate with the ERP interface, yields 
effective MES under static conditions. Structuring 
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VWSs into functionality component assemblies, that 
are instantly downloaded and installed on demand 
from a reference node, effectively addresses 
maintenance, and the evolution of a MES system. 
Structuring functionality components into sub-
components, where components keep track of 
versioning and dependency lists, keep the VWS 
structure consistent. Statistical simulation on the 
production floor improves micro-planning. Proposed 
MES architecture addresses these implementation 
issues: ease of implementation, ease of maintenance, 
system security, capability of evolution, and 
preservation of net bandwidth. Modern technologies 
(SOAP/.NET, XML, and HTTPS) are being used to 
produce a MES that has the potential, by design, to 
grow, and the potential to evolve technically through 
the choice of the currently most powerful IC 
technologies. 
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